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Abstract. We derive a set of relations among the thermal components of the 3-point function and its
spectral representations at finite temperature in the real-time formalism. We then use these to calculate,
in certain kinematic limits, the 3-point spectral densities for φ3

6 theory and relate the result to the case of
hot QCD.

I Introduction

Spectral functions are essential and useful in finite temper-
ature field theory [1,2] because a large number of trans-
port coefficients are given directly by them [3–5]. Further-
more, studying the spectral functions may help us to un-
derstand the quasi-particle structure of field theories at
finite temperature as well as to identify the microscopic
processes underlying their dynamics. In this paper we de-
rive expressions for the spectral densities of the 3-point
Green functions in finite temperature field theories within
the Closed Time Path (CTP) formalism [6–8] and eval-
uate the spectral densities of the 3-point function for φ3

theory using resummed propagators in the “hard thermal
loop” (HTL) approximation [9–11].

In the imaginary-time formalism (ITF) [2], one obtains
the spectral densities from the discontinuity of the Green
functions across the real energy axis after performing an
analytic continuation of the imaginary external energy
variables to the real axis [12]. Explicit expressions for the
spectral densities for the three gluon ITF vertex in QCD
in HTL approximation were derived in [11].

In real-time formulations of finite temperature field
theory the number of degrees of freedom is doubled, lead-
ing to a 2×2 matrix structure of the single particle propa-
gators. The external energies remain real, and the compli-
cated summation over the Masubara frequencies followed
by analytic continuation is avoided. In [13] Kobes and Se-
menoff derived Cutkosky rules for calculating the imagi-
nary parts of thermal two-point functions using the for-
malism of Thermo-Field Dynamics (TFD). Spectral rep-
resentations of the 3-point Green functions were derived
in [14] using the notation of “circled” vertices. Recently
these cutting rules were reexamined in the CTP formal-
ism in [15,16] and given a simple physical interpretation
in [17].
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A useful technical simplification for perturbative calcu-
lations in real-time finite temperature field theory is pro-
vided by the decomposition and spectral representation
of the 3-point vertex given in [18]. Missing in that paper
is an explicit expression of the spectral densities in terms
of the thermal components of the real-time 3-point vertex
function. This hole is filled in by the present paper.

We then apply these expressions to the 3-point vertex
for φ3 theory in 6 dimensions. We study the correspond-
ing spectral densities in the 1-loop approximation for soft
external momenta. Explicit results are given for vanishing
external spatial momenta. It is well-known [2,9] that field
theories with massless degrees of freedom develop at non-
zero temperature infrared divergences which usually signal
dynamical mass generation and in many cases can be dealt
with by resummation of the “hard thermal loops” [9]. In
φ3 theory the situation is even a little more complicated:
the effective potential is unbounded from below, and in the
massless limit the theory doesn’t even have a metastable
ground state. By adding to the Lagrangean a non-zero,
positive mass term the theory develops a metastable, lo-
cal minimum at 〈φ〉 = 0 which, at zero temperature, is
perturbatively stable in the limit of small 3-point cou-
pling constant g [10]. At non-zero temperature, however,
the tadpole diagram contains a temperature dependent fi-
nite, but negative contribution which shifts the position
〈φ〉 of the metastable vacuum to negative values and re-
duces the effective boson mass [10]. This effect must be
taken into account self-consistently via resummed (mas-
sive) propagators in order to avoid an expansion around
the wrong vacuum.

We will use the CTP formalism [6,7] throughout this
paper in the form given in [8,18]. In this representation of
the real-time formalism the single-particle propagator in
momentum space has the form

D(p) =
(

D11 D12
D21 D22

)
, (1)
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Fig. 1. 3-point vertex in φ3 theory

where

i D11(p) = (i D22)
∗

= iP
(

1
p2 − m2

)
+

(
n(p0) +

1
2

)
ρ(p) , (2a)

i D12(p) = n(p0) ρ(p) , (2b)
i D21(p) =

(
1 + n(p0)

)
ρ(p) . (2c)

Here n(p0) is the thermal Bose-Einstein distribution

n(p0) =
1

eβp0 − 1
, (3)

and ρ(p) is the two-point spectral density which for free
particles is given by

ρ(p) = 2π sgn(p0) δ(p2 − m2) . (4)

The paper is organized as follows. In Sect. II we review
some useful general relations among the thermal compo-
nents of the 3-point function and their spectral represen-
tations, both for the connected and for the truncated ver-
tices. In Sect. III we evaluate the spectral densities for the
truncated 3-point vertex in φ3 in 1-loop approximation.
In Sect. IV we discuss and summarize our results. Some
technical details of the calculations and further useful re-
lations are given in the Appendix.

II Spectral representation
of the 3-point vertex

In this section we shortly review some useful relations
among the different thermal components of the 3-point
functions and their spectral representations. Equivalent
(although not identical) relations have been reported in
the literature [7,13,14,19,20] in different notation. For
simplicity of presentation we consider the 3-point vertex
function for φ3 theory, see Fig. 1. The three incoming ex-
ternal momenta are k1 = p, k2 = q, and k3 = −p − q.

II.1 Relations among the thermal components of the
real-time vertex

The thermal components of the connected 3-point vertex
function are defined by [7]

Γ111 = 〈T (φ1φ2φ3)〉 , (5a)

Γ112 = 〈φ3T (φ1φ2)〉 , (5b)
Γ121 = 〈φ2T (φ1φ3)〉 , (5c)
Γ211 = 〈φ1T (φ2φ3)〉 , (5d)

Γ122 = 〈T̃ (φ2φ3)φ1〉 , (5e)

Γ212 = 〈T̃ (φ1φ3)φ2〉 , (5f)

Γ221 = 〈T̃ (φ1φ2)φ3〉 , (5g)

Γ222 = 〈T̃ (φ1φ2φ3)〉 , (5h)

where
φ1 ≡ φ(x1) = φ(x1, t1) etc., and Γabc ≡ Γabc(x1, x2, x3)).
Following [21] we defined the process of “tilde conjuga-
tion” by reversing the time order in coordinate space:
time-ordered products become products with anti-chro-
nological ordering, and θ(t) becomes θ(−t).

Using the identity θ(t)+θ(−t) = 1 it is straightforward
to show that

2∑
a,b,c=1

(−1)a+b+c−3Γabc = 0 . (6)

In momentum space tilde conjugation turns out to be
equivalent to complex conjugation and, using the KMS
condition, one finds [7,20]

Γ̃111(k1, k2, k3) = Γ ∗
111(k1, k2, k3)

= Γ222(k1, k2, k3) , (7a)

Γ̃121(k1, k2, k3) = Γ ∗
121(k1, k2, k3)

= eβω2 Γ212(k1, k2, k3) , (7b)

Γ̃211(k1, k2, k3) = Γ ∗
211(k1, k2, k3)

= eβω1 Γ122(k1, k2, k3) , (7c)

Γ̃112(k1, k2, k3) = Γ ∗
112(k1, k2, k3)

= eβω3 Γ221(k1, k2, k3) , (7d)

where ki = (ωi,ki) and k1 + k2 + k3 = 0. These identities
show that at most three of the eight thermal components
of the real-time vertex function are independent.

II.2 Largest and smallest time equations

If t3 is the largest time argument, one obtains from (5a)
and (5b) the identities

θ32 θ21 Γ111 = 〈φ3φ2φ1〉 = θ32 θ21 Γ112 (8)

or
θ32 θ21 (Γ111 − Γ112) = 0 . (9)

Here θij ≡ θ(ti−tj). Similarly one derives the more general
relations

θ32 θ21 (Γab1 − Γab2) = 0 = θ31 θ12 (Γab1 − Γab2) , (10a)
θ21 θ13 (Γa1b − Γa2b) = 0 = θ23 θ31 (Γa1b − Γa2b) , (10b)
θ13 θ32 (Γ1ab − Γ2ab) = 0 = θ12 θ23 (Γ1ab − Γ2ab) , (10c)
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where a and b can be either 1 or 2. By tilde conjugation
one obtains from these equations the following relations:

θ12 θ23 (Γ̃ab1 − Γ̃ab2) = 0 = θ21 θ13 (Γ̃ab1 − Γ̃ab2) , (11a)

θ31 θ12 (Γ̃a1b − Γ̃a2b) = 0 = θ13 θ32 (Γ̃a1b − Γ̃a2b) , (11b)

θ23 θ31 (Γ̃1ab − Γ̃2ab) = 0 = θ32 θ21 (Γ̃1ab − Γ̃2ab) , (11c)

Equations (10) and (11) are the analogues of the “largest
time equations” and “smallest time equations”, respec-
tively, of [13]. They will be used extensively in the deriva-
tion of the spectral representations of Appendix A. Their
generalization to arbitrary n-point functions is straight-
forward.

II.3 Physical vertex functions

One can construct the “retarded”, “forward”, and “even”
vertex functions from the eight components of the 3-point
function as [7,18].

ΓR = Γ111 − Γ112 − Γ211 + Γ212, (12a)
ΓRi = Γ111 − Γ112 − Γ121 + Γ122, (12b)
ΓRo = Γ111 − Γ121 − Γ211 + Γ221, (12c)
ΓF = Γ111 − Γ121 + Γ212 − Γ222, (12d)
ΓFi = Γ111 + Γ122 − Γ211 − Γ222, (12e)
ΓFo = Γ111 − Γ112 + Γ221 − Γ222, (12f)
ΓE = Γ111 + Γ122 + Γ212 + Γ221, (12g)

Inversion of these equations together with (6) yields ex-
pressions for the thermal components Γabc in terms the
above “physical” vertex functions; they are given in com-
pact form in [18].

Using (6) and (7) one can eliminate the “forward” and
“even” vertex functions in terms of the three retarded
vertices. Thus all components of Γabc can be expressed
through ΓR, ΓRi, and ΓRo [18,19].

II.4 Spectral integral representations

In [18] the following integral representations for the re-
tarded vertex functions in momentum space were derived
(in slightly different notation):

ΓR(ω1, ω2, ω3)

=
−i

2π2

∫ ∞

−∞

dΩ1dΩ2

ω2 − Ω2 + iε

×
(

ρ1

ω1 − Ω1 − iε
+

ρ1 − ρ2

ω3 − Ω3 − iε

)
, (13a)

ΓRi(ω1, ω2, ω3)

=
−i

2π2

∫ ∞

−∞

dΩ1dΩ2

ω1 − Ω1 + iε

×
(

ρ2

ω2 − Ω2 − iε
− ρ1 − ρ2

ω3 − Ω3 − iε

)
, (13b)

ΓRo(ω1, ω2, ω3)

=
−i

2π2

∫ ∞

−∞

dΩ1dΩ2

ω3 − Ω3 + iε

×
(

ρ1

ω1 − Ω1 − iε
+

ρ2

ω2 − Ω2 − iε

)
. (13c)

The spatial momenta k1, k2, k3=−(k1+k2) are the same
on both sides of these equations and have therefore been
suppressed. The frequency arguments of the spectral func-
tions under the integrals are ρi ≡ ρi(Ω1, Ω2, Ω3), with
Ω1 + Ω2 + Ω3 = 0. In Appendix A we give a short deriva-
tion of these integral representations from which it follows
that in momentum space

ρ1 = Im (Γ122 + Γ211) , (14a)
ρ2 = Im (Γ121 + Γ212) . (14b)

The spectral integral representations (13) differ from
those given in (31) of [18] because they use different spec-
tral densities. The spectral functions ρ1, ρ2 used here
are not simply related to ρA, ρB of [18]: while it follows
from (14) that ρ1 and ρ2 are real in momentum space, ρA

and ρB are instead real in coordinate space and satisfy
a more complicated relation ((28) of [18]) in momentum
space. Still, both sets of spectral integral representations
are correct; the one given here appears to simplify things
in practice, however (see below).

Similar spectral representations can be derived for the
truncated (1-particle irreducible, 1PI) vertex functions.
The technical steps are given in Appendix A.2, together
with the corresponding generalizations to 1PI vertex func-
tions for the relations derived in the preceding subsections.
Here we only state the result:

GR(ω1, ω2, ω3)

=
−i

2π2

∫ ∞

−∞

dΩ1dΩ2

ω2 − Ω2 + iε

×
(

ρ′
1

ω1 − Ω1 − iε
+

ρ′
1 − ρ′

2

ω3 − Ω3 − iε

)
, (15a)

GRi(ω1, ω2, ω3)

=
−i

2π2

∫ ∞

−∞

dΩ1dΩ2

ω1 − Ω1 + iε

×
(

ρ′
2

ω2 − Ω2 − iε
− ρ′

1 − ρ′
2

ω3 − Ω3 − iε

)
, (15b)

GRo(ω1, ω2, ω3)

=
−i

2π2

∫ ∞

−∞

dΩ1dΩ2

ω3 − Ω3 + iε

×
(

ρ′
1

ω1 − Ω1 − iε
+

ρ′
2

ω2 − Ω2 − iε

)
, (15c)

with

ρ′
1 = Im (G122 − G211) , (16a)

ρ′
2 = Im (G212 − G212) . (16b)

These results should be compared with the expressions
derived by Kobes in [14] which have a similar structure but
use three somewhat differently defined spectral densities.
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III 1-Loop spectral densities for the vertex
in φ3

6 theory

In this section we calculate the 1-loop contribution to the
spectral functions ρ′

1, ρ′
2 for the 1PI 3-point vertex in φ3

theory. As interaction term in the Lagrangean we use g
6φ3.

From (16) and (A26) we have

ρ′
1 = Im (G122 + eβp0G∗

122) = − 1
n(p0)

Im G122 . (17)

For ρ′
1 we thus must evaluate only the single Feynman

diagram in Fig. 1 for a = 1, b = c = 2. Using standard
real-time Feynman rules [7,8] one gets (in n space-time
dimensions)

G122(p, q,−p − q)

= (−ig)(ig)2
∫

dns

(2π)n

×[iD12(s)][iD22(s + q)][iD21(s − p)] . (18)

Inserting the thermal free propagators (2), extracting the
imaginary part, and performing the integration over s0

with the help of the function δ(s2 − m2) = [δ(s0 − Es) +
δ(s0 + Es)]/2Es, where Es =

√
m2 + s2, one finds

ρ1(p, q,−p − q)

= − g3

n(p0)

(
A(p, q) + B(p, q)

)
, (19a)

A(p, q)

=
∫

dn−1s

(2π)n−3

1
2Es

sgn(Es + q0) sgn(Es − p0)

× δ
(
(Es + q0)2 − E2

s+q

)
δ
(
(Es − p0)2 − E2

s−p

)
× n(Es)

(
1
2 + n(Es + q0)

) (
1 + n(Es − p0)

)
, (19b)

B(p, q)

=
∫

dn−1s

(2π)n−3

1
2Es

sgn(Es − q0) sgn(Es + p0)

×δ
(
(Es − q0)2 − E2

s+q

)
δ
(
(Es + p0)2 − E2

s−p

)
×(

1 + n(Es)
) (

1
2 + n(Es − q0)

)
n(Es + p0) . (19c)

Here Es+q =
√

m2 + (s + q)2, Es−p =
√

m2 + (s − p)2,
and in (19c) we used the identity n(−x) = −(

1 + n(x)
)
.

The integrands in (19b,c) contain up to three powers of
the thermal Bose distribution functions. Superficial power
counting thus suggests severe infrared singularities in the
massless limit. On the other hand, 1-loop integrals in the
imaginary time formalism are always linear in the ther-
mal distribution functions which arise from conversion of
a single sum over discrete loop frequencies into a com-
plex contour integral [9]. This suggests that the infrared
problems resulting from higher powers of the distribution
functions in the real time formalism are spurious. In fact,
it was already noted in [22,23] that the cubic terms cancel
from the retarded 3-point functions. Using the identity

n(a) n(b) = n(a + b)
(
1 + n(a) + n(b)

)
(20)

one can show that also the quadratic terms disappear, and
that A and B reduce to

A(p, q)

= n(p0)
∫

dn−1s

(2π)n−3

1
2Es

sgn(Es + q0) sgn(Es − p0)

× δ
(
(Es + q0)2 − E2

s+q

)
δ
(
(Es − p0)2 − E2

s−p

)
×

[
1
2

(
n(Es − p0) − n(Es)

)
+n(p0 + q0)

(
n(Es − p0) − n(Es + q0)

)
+n(q0)

(
n(Es + q0) − n(Es)

)]
, (21a)

B(p, q)

= n(p0)
∫

dn−1s

(2π)n−3

1
2Es

sgn(Es − q0) sgn(Es + p0)

× δ
(
(Es − q0)2 − E2

s+q

)
δ
(
(Es + p0)2 − E2

s−p

)
×

[
1
2

(
n(Es + p0) − n(Es)

)
+n(p0 + q0)

(
n(Es + p0) − n(Es − q0)

)
+n(q0)

(
n(Es − q0) − n(Es)

)]
. (21b)

Note that the factor n(p0) in front of the integrals can-
cels the distribution function in the denominator of (17),
(19a). The remaining integrands are linear in the thermal
distribution functions n(Es ± . . .) and are infrared finite
even in the massless limit [24].

To simplify the notation it is convenient to introduce
the 4-vectors V± =

(
1,± s

Es

)
. With their help we can

rewrite the arguments of the δ-functions in (19) as

(s + q)2
∣∣
s0=±Es

= m2 + q2 ± 2Es q · V± , (22a)

(s − p)2
∣∣
s0=±Es

= m2 + p2 ∓ 2Es p · V± . (22b)

We will consider the theory in the weak coupling limit,
g � 1. As shown in [10], for n = 6 the theory becomes
perturbatively unstable1 for temperatures above

Tcr =
(

180
π

)1/4
m√
g

, (23)

so for given T we must use massive propagators with a
mass that satisfies m >

√
g T . We will consider the case√

g T . m � T and calculate the spectral density for the
vertex for soft external momenta, q, p ∼ m ∼ √

g T � T .
For gauge theories it is known that in the limit of soft

external momenta there is a “hard thermal loop” (HTL)
contribution to the 3-gluon vertex which is of the same
order in the coupling constant as the tree-level result and
must therefore be resummed in a complete leading order
calculation [9]. To see whether such a resummation is also
required in scalar φ3 theory we first evaluate the functions

1 Stability problems for perturbation theory in massless φ3

theory were recently also discussed in the context of relativistic
transport theory in [25].
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A, B in the hard thermal loop approximation, by assum-
ing that the loop integral in (22) is dominated by “hard”
momenta s̄ = |s| ∼ T [9]. For such momenta we can ne-
glect the rest mass m, Es ≈ s̄, and the arguments of the
δ-functions can be approximated according to

(s + q)2
∣∣
s0=±Es

≈ ±2Es q · V± , (24a)

(s − p)2
∣∣
s0=±Es

≈ ∓2Es p · V± . (24b)

Setting further

sgn(Es ± p0) ≈ 1 ≈ sgn(Es ± q0) , (25a)
q · V± ≈ q0 ∓ |q| cos θ′ , (25b)
p · V± ≈ p0 ∓ |p| cos θ , (25c)

where θ, θ′ are the angles between s and p, q, respectively,
the angular and radial integrations in (21) decouple [9].
We thus obtain

A(p, q) + B(p, q)
∣∣∣
HTL

= n(p0) a(p0, q0) ω(p, q) , (26a)

a(p0, q0)

=
1

2nπn−3

∫ ∞

0
ds̄ s̄n−5

×
[

1
2

(
n(s̄ − p0) + (n(s̄ + p0) − 2n(s̄)

)

+n(q0)
(
n(s̄ + q0) + n(s̄ − q0) − 2n(s̄)

)
(26b)

+n(p0 + q0)
(
n(s̄ + p0) + n(s̄ − p0)

−n(s̄ + q0) − n(s̄ − q0)
)]

,

ω(p, q) =
∫

dΩn−1 δ(q · V+) δ(p · V+)

=
∫

dΩn−1 δ(q · V−) δ(p · V−) . (26c)

The angular integral (26c) is identical with the one found
by Taylor [11] for the spectral density of the 3-gluon vertex
in hot QCD. For n = 6 space-time dimensions (for which
the theory is renormalizable) the radial integral (26b) is
easily evaluated with the help of

I(a) =
∫ ∞

0
ds̄ s̄

(
1

es̄+a − 1
+

1
es̄−a − 1

)
(27)

=
∫ a

0
(x − a) dx + 2

∫ ∞

0

x dx

ex − 1
=

π2

3
− a2

2
.

We find

a(p0, q0) = − 1
27π3

[
p2
0

(
1
2 + n(p0 + q0)

)

+q2
0

(
n(q0) − n(q0 + p0)

)]
. (28)

For p0, q0 � T this goes to

a(p0, q0) ≈ − 1
27π3 p0T . (29)

For p0 ∼ √
g T � T this is much smaller than the lead-

ing T 2-behaviour expected on dimensional grounds; this
implies that the assumption that the loop integral is dom-
inated by hard momenta s̄ ∼ T was wrong, and that in
scalar φ3 theory there is no leading HTL contribution to
the 3-point vertex, in contrast to the case of gauge theories.
Braaten-Pisarski resummation for φ3 theory can thus be
performed with bare 3-point vertices. A similar result was
obtained in [26,27] for scalar QED. The existence of lead-
ing HTL contributions to vertices in QCD and fermionic
QED can be traced back to the existence of Ward iden-
tities which connect vertex corrections with self energy
corrections [9,27,28].

Before proceeding to a more accurate evaluation of the
spectral density for vanishing spatial external momenta,
let us shortly comment on the other spectral density which
is obtained from

ρ′
2 = − 1

n(q0)
ImG212 . (30)

By inspection of the corresponding labelling of the dia-
gram in Fig. 1 one observes that G212(p, q,−p − q) is ob-
tained from G122(p, q,−p−q) by exchanging the legs with
the external momenta p and q and routing the internal
momentum s in the opposite direction. This yields the
identity2

ρ′
2(p, q) = ρ′

1(q, p) . (31)

For the HTL contributions to the corresponding loop in-
tegrals we thus obtain

ρHTL
1 (p, q) = p0 ρHTL(p, q) , (32a)

ρHTL
2 (p, q) = q0ρHTL(p, q) , (32b)

ρHTL(p, q) ≈ g3T

27π3

∫
dΩ5 δ(p·V+) δ(q·V+) . (32c)

Up to a trivial external momentum factor the two spectral
densities are thus equal to each other in the HTL limit.
This agrees with the observation by Taylor [11] that in
QCD in HTL approximation the two independent spectral
densities for the 3-gluon vertex degenerate.

The result (29) shows that the loop integral is not dom-
inated by hard momenta of order T , contrary to the as-
sumption under which the integral was evaluated. This
means that the HTL result for the spectral density is not
reliable as an order of magnitude estimate, not even for
power counting in the coupling constant g. In general a
better estimate is difficult to obtain because for small loop
momenta the radial and angular integrations cannot be
decoupled. Things simplify, however, for vanishing exter-
nal spatial momenta, q = p = 0. In this limit we find

A(p0, q0)

= n(p0)
∫

dn−1s

(2π)n−3

1
2Es

sgn(Es + q0)

2 Note that such an identity is not expected to hold for the
3-point vertex in Yukawa theory or in other theories where
different types of fields are attached to the vertex.
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× sgn(Es − p0)
δ(2Es + q0) δ(2Es − p0)

|p0||q0|
×

[
1
2

(
n(Es − p0) − n(Es)

)
− n(p0 + q0)

(
n(Es + q0) − n(Es − p0)

)
+ n(q0)

(
n(Es + q0) − n(Es)

)]
, (33a)

B(p0, q0)

= n(p0)
∫

dn−1s

(2π)n−3

1
2Es

sgn(Es − q0)

× sgn(Es + p0)
δ(2Es − q0) δ(2Es + p0)

|p0||q0|
×

[
1
2

(
n(Es + p0) − n(Es)

)
− n(p0 + q0)

(
n(Es − q0) − n(Es + p0)

)
+ n(q0)

(
n(Es − q0) − n(Es)

)]
, (33b)

Due to the δ-functions p0 and q0 must have the same
magnitude and opposite sign, and A contributes only for
p0 = −q0 > 2m while B contributes for p0 = −q0 < −2m.
The angular integrations are now trivial, and the radial
integration is easily performed using the δ-functions. The
final result, to leading order in the small ratios p0/T, q0/T ,
is

ρ′
1(p0, q0;p = q = 0)

≈ − g3

12π

(p2
0 − 4m2)3/2

p2
0q

2
0

T 2

×
[
θ(p0 − 2m) − θ(−p0 − 2m)

]
δ(p0 + q0) . (34)

Using (31) one obtains for the other spectral density

ρ′
2(p0, q0;p = q = 0) = ρ′

1(q0, p0; q = p = 0)
= −ρ′

1(p0, q0;p = q = 0) . (35)

For p0 ∼ q0 ∼ √
g T power counting shows that these

spectral densities are of order g2. Inserting them into the
spectral representations (15) and evaluating the latter via
residue calculus it is easy to see [29] that the retarded
1-loop 1PI vertex functions at zero external spatial mo-
menta are of the same order, i.e. one order of g down
relative to the tree-level vertex. This reconfirms the above
conclusion that in scalar φ3

6 theory no vertex resummation
is necessary.

IV Conclusions

In the CTP approach we have derived a set of useful rela-
tions among the eight thermal components of the 3-point
vertex function many of which we have not previously
seen in the literature in this form. They simplify formal
manipulations in the real-time formulation of finite tem-
perature field theory. With their help we have found an
alternative derivation of spectral representations, in terms

of two independent spectral densities, for the various ther-
mal components of the real-time 3-point vertex at finite
temperature; they appear simpler than those given in the
literature before.

We then proceeded to an evaluation of these two spec-
tral densities for the 3-point vertex in hot φ3 theory in
5+1 dimensions, in the 1-loop approximation for soft ex-
ternal momenta p, q ∼ √

g T . This scale is set by the value
of the (resummed) scalar mass m which is required to
render the vacuum in φ3

6 theory perturbatively stable. We
found that, contrary to the case of the 3-gluon vertex in
QCD, the loop integral for the spectral density for the
scalar 3-point vertex is not dominated by hard momenta
of order T , and the popular HTL approximation which de-
couples the radial and angular integrals produces an unre-
liable result. On the other hand, this means that even for
soft external momenta the 1-loop vertex is of lower order
than the tree-level contribution, and no vertex resumma-
tion is necessary in the Braaten-Pisarski high-temperature
resummation scheme. An explicit evaluation of the 1-loop
spectral densities for the 3-point vertex at vanishing ex-
ternal spatial momenta yields a result which is of order
g2, one power of g (but not two powers of g as in naive
perturbation theory) below the tree-level vertex.

We also showed that the two independent spectral den-
sities for the 3-point vertex in φ3 theory are very closely
related by the simple symmetry relation (31). At vanish-
ing external spatial momenta they become, up to a sign,
equal to each other. This should be compared with the
finding of Taylor [11] that in QCD in HTL approximation
the two spectral densities for the 3-gluon vertex become
identical.
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Appendix A:
derivation of spectral representations

A.1 Connected three-point functions

We start from the explicit expressions for the retarded
connected 3-point vertex functions in φ3 theory:

ΓR = θ23θ31〈[[φ2, φ3], φ1]〉 + θ21θ13〈[[φ2, φ1], φ3]〉 , (A1a)
ΓRi = θ12θ23〈[[φ1, φ2], φ3]〉 + θ13θ32〈[[φ1, φ3], φ2]〉 , (A1b)
ΓRo = θ32θ21〈[[φ3, φ2], φ1]〉 + θ31θ12〈[[φ3, φ1], φ2]〉 . (A1c)

(i) We begin with ΓRo. Inserting the identities

θ31ΓRo = ΓRo = θ32ΓRo (A2)
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into
ΓRo = (θ21 + θ12)ΓRo (A3)

one obtains

ΓRo = θ31θ12ΓRo + θ32θ21ΓRo . (A4)

Subtraction of the identities

θ31θ12ΓR = 0 = θ32θ21ΓRi , (A5)

which result from conflicting θ-functions, then gives

ΓRo = θ32θ21(ΓRo − ΓRi) + θ31θ12(ΓRo − ΓR)
= θ32θ21(Γ221 + Γ112 − Γ211 − Γ122)

+θ31θ12(Γ221 + Γ112 − Γ121 − Γ212) . (A6)

With the help of (10a) and (7a) this is transformed into

ΓRo = θ32θ21(Γ222 + Γ111 − Γ211 − Γ122)
+θ31θ12(Γ222 + Γ111 − Γ121 − Γ212)

= θ32θ21(Γ̃111 + Γ̃222 − Γ211 − Γ122)

+θ31θ12(Γ̃111 + Γ̃222 − Γ121 − Γ212) . (A7)

Using also (11b,c) one finally gets

ΓRo = θ32θ21
(
Γ̃122 + Γ̃211 − (Γ122 + Γ211)

)
+θ31θ12

(
Γ̃121 + Γ̃212 − (Γ121 + Γ212)

)
. (A8)

(ii) For ΓR one proceeds similarly. One writes

ΓR = (θ31 + θ13)ΓR = θ31(θ23ΓR) + θ31(θ21ΓR) (A9)

and subtracts the identities

θ21θ13ΓRo = 0 = θ23θ31ΓRi . (A10)

This yields

ΓR = θ21θ13
(
Γ121 + Γ212 − (Γ112 + Γ221)

)
+θ23θ31

(
Γ212 + Γ121 − (Γ211 + Γ122)

)
. (A11)

Using (10b) and (11a,c) this is then transformed into

ΓR = θ21θ13
(
Γ̃112 + Γ̃221 − (Γ112 + Γ221)

)
+θ23θ31

(
Γ̃211 + Γ̃122 − (Γ211 + Γ122)

)
. (A12)

(iii) Finally, ΓRi is reexpressed by writing

ΓRi = (θ23 + θ32)ΓRi

= θ23(θ12ΓRi) + θ32(θ13ΓRi) (A13)

and subtracting the identities

θ12θ23ΓRo = 0 = θ13θ32ΓR . (A14)

This yields

ΓRi = θ12θ32
(
Γ122 + Γ211 − (Γ112 + Γ221)

)
+θ13θ32

(
Γ122 + Γ211 − (Γ121 + Γ212)

)
. (A15)

Using (10c) and (11a,b) this is transformed into

ΓRi = θ12θ23
(
Γ̃112 + Γ̃221 − (Γ112 + Γ221)

)
+θ13θ32

(
Γ̃121 + Γ̃212 − (Γ121 + Γ212)

)
. (A16)

(iv) We can summarize these results in coordinate
space as follows:

ΓR = θ21θ13ρ̄3 + θ23θ31ρ̄1 , (A17a)
ΓRi = θ12θ23ρ̄3 + θ13θ32ρ̄2 , (A17b)
ΓRo = θ32θ21ρ̄1 + θ31θ12ρ̄2 , (A17c)

where

ρ̄1 = Γ̃122 + Γ̃211 − (Γ122 + Γ211) , (A18a)

ρ̄2 = Γ̃121 + Γ̃212 − (Γ121 + Γ212) , (A18b)

ρ̄3 = Γ̃112 + Γ̃221 − (Γ112 + Γ221) . (A18c)

(v) In momentum space tilde conjugation reduces to com-
plex conjugation (see (7)), and the last three equations
correspondingly reduce to

ρ̄1 = −2iIm (Γ122 + Γ211) , (A19a)
ρ̄2 = −2iIm (Γ121 + Γ212) , (A19b)
ρ̄3 = −2iIm (Γ112 + Γ221) . (A19c)

Using the Fourier integral representation of the θ function

θij = − 1
2πi

∫ ∞

−∞
dΩ

e−iΩ(ti−tj)

Ω + iε
, (A20)

it is then straightforward to derive the following spectral
integral representations in momentum space:

ΓR(ω1, ω2, ω3)

=
−i

2π2

∫ ∞

−∞

dΩ1dΩ2

ω2 − Ω2 + iε

×
(

ρ1(Ω1, Ω2, Ω3)
ω1 − Ω1 − iε

+
ρ3(Ω1, Ω2, Ω3)
ω3 − Ω3 − iε

)
, (A21a)

ΓRi(ω1, ω2, ω3)

=
−i

2π2

∫ ∞

−∞

dΩ1dΩ2

ω1 − Ω1 + iε

×
(

ρ2(Ω1, Ω2, Ω3)
ω2 − Ω2 − iε

+
ρ3(Ω1, Ω2, Ω3)
ω3 − Ω3 − iε

)
, (A21b)

ΓRo(ω1, ω2, ω3)

=
−i

2π2

∫ ∞

−∞

dΩ1dΩ2

ω3 − Ω3 + iε

×
(

ρ1(Ω1, Ω2, Ω3)
ω1 − Ω1 − iε

+
ρ2(Ω1, Ω2, Ω3)
ω2 − Ω2 − iε

)
, (A21c)

where ω1 + ω2 + ω3 = Ω1 + Ω2 + Ω3 = 0, and we used the
new notation ρ̄k = −2iρk where (according to (A19)) the
ρk are real functions. The spatial momenta on both sides
of the equations are equal.

(vi) In [18] it was shown that only two of the spectral
densities ρi are independent. This is consistent with the
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results derived here after realizing, by again using (10)
and (11), that

θ12θ23(ρ̄1 − ρ̄2 + ρ̄3) = 0 , (A22a)
θ21θ13(ρ̄2 − ρ̄1 + ρ̄3) = 0 , (A22b)

such that one may substitute ρ3 = ρ1 − ρ2 in ΓR and
ρ3 = ρ2 − ρ1 in ΓRi (please note the opposite sign in the
two cases!). This then yields (13).

A.2 1PI three-point functions

The 1PI or truncated vertex functions Gabc(k1, k2, k3) are
obtained from the connected vertex functions Γabc by trun-
cating the three external propagators:

Gabc(k1, k2, k3) =
1
i3

D−1
aa′(k1)D−1

bb′ (k2) (A23)

×D−1
cc′ (k3)Γa′b′c′(k1, k2, k3) .

They satisfy the identity

2∑
a,b,c=1

Gabc = 0 , (A24)

and the three retarded 1PI vertices are given by [7,18]

GR = G111 + G112 + G211 + G212 , (A25a)
GRi = G111 + G112 + G121 + G122 , (A25b)
GRo = G111 + G121 + G211 + G221 . (A25c)

These relations differ from (6) and (12) only by sign fac-
tors (−1)a+b+c−3. In momentum space we have instead of
(7) [20]

G̃111(k1, k2, k3) = −G∗
111(k1, k2, k3)

= G222(k1, k2, k3) , (A26a)

G̃121(k1, k2, k3) = −G∗
121(k1, k2, k3)

= eβω2 G212(k1, k2, k3) , (A26b)

G̃211(k1, k2, k3) = −G∗
211(k1, k2, k3)

= eβω1 G122(k1, k2, k3) , (A26c)

G̃112(k1, k2, k3) = −G∗
112(k1, k2, k3)

= eβω3 G221(k1, k2, k3) , (A26d)

where “tilde conjugation” is defined in the same way as
for the connected vertex.

From identities like θ32θ21(GR + GRi) = 0 involving
conflicting θ-functions one can derive largest and smallest
time equations for the 1PI vertices similar to those derived
in Sect. II.2 for the connected vertices. One finds that the
sign factor (−1)a+b+c−3 simply carries over, changing all
relative minus signs in (9)-(11) into plus signs. For exam-
ple, (9) turns into

θ32θ21(G111 + G112) = 0 . (A27)

By following the same procedure as for the connected
functions in Appendix A.1 one obtains for the truncated
functions the following relations in coordinate space:

GR = θ21θ13ρ̄
′
3 + θ23θ31ρ̄

′
1 , (A28a)

GRi = θ12θ23ρ̄
′
3 + θ13θ32ρ̄

′
2 , (A28b)

GRo = θ32θ21ρ̄
′
1 + θ31θ12ρ̄

′
2 , (A28c)

where

ρ̄′
1 = G̃211 − G̃122 + G211 − G122 , (A29a)

ρ̄′
2 = G̃121 − G̃212 + G121 − G212 , (A29b)

ρ′
3 = G̃112 − G̃221 + G112 − G221 . (A29c)

In momentum space, by making use of (A26), the last
three equations reduce to

ρ̄′
1 = −2i Im (G122 − G211) , (A30a)

ρ̄′
2 = −2i Im (G212 − G212) , (A30b)

ρ̄′
3 = −2i Im (G221 − G221) . (A30c)

Using further (A24), the largest and smallest time equa-
tions, and (A26) for the truncated functions one shows
that

θ12θ23(ρ̄′
1 − ρ̄′

2 + ρ̄′
3) = 0 , (A31a)

θ21θ13(ρ̄′
2 − ρ̄′

1 + ρ̄′
3) = 0 . (A31b)

Inserting these into (A28) and transforming to momentum
space one obtains the spectral integrals for the truncated
vertex functions given in (15). Please note that, up to
the different definition of the spectral densities, they are
formally identical with the spectral representations (13)
for the corresponding connected vertex functions.

Appendix B: symmetries
of the three-point spectral densities

In addition to (31), which holds only for 3-point vertices
with three identical external legs, there are some useful
other symmetries for the 3-point spectral densities. In-
serting the propagators (2) into (18) and using twice the
relation (20) one obtains, without any further manipula-
tions, the expression

ρ′
1(p, q)

= g3
∫

dns

(2π)n−3 sgn(s0) sgn(s0 + q0) sgn(s0 − p0)

× δ(s2 − m2) δ
(
(s + q)2 − m2) δ

(
(s − p)2 − m2)

×
[

1
2

(
n(s0) − n(s0 − p0)

)

+n(q0)
(
n(s0) − n(s0 + q0)

)

+n(p0 + q0)
(
n(s0 + q0) − n(s0 − p0)

)]
. (B1)

By reversing the sign of the spatial integration variable,
s 7→ −s, one immediately reads off

ρ′
1(p0,p; q0, q) = ρ′

1(p0,−p; q0,−q) . (B2)
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With the additional help of the identity n(−x) = −(
1 +

n(x)
)

one shows similarly that

ρ′
1(−p, −q) = −ρ′

1(p, q) . (B3)

The combination of these two identities gives

ρ′
1(−p0,p;−q0, q) = −ρ′

1(p0,p; q0, q) , (B4)

i.e. the spectral density is odd under simultaneous sign
change of both frequencies. This generalizes a similar con-
dition for the spectral density for the single-particle prop-
agator. The above symmetry relations are consistent with
(4) and (5) in [24].
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